The time-dependent biomechanical behaviour of the periodontal ligament--an in vitro experimental study in minipig mandibular two-rooted premolars.
نویسندگان
چکیده
The aim of the present work was to evaluate the biomechanical behaviour of the periodontal ligament (PDL) with respect to force development with different controlled loading velocities. For this purpose, an in vitro experimental study was performed on 18 minipig jaw segments. Displacements with variable increasing loading time were applied to one premolar crown of each jaw segment into the linguobuccal direction through a force sensor provided by a specialized biomechanical set-up. The predefined displacement values to be achieved were 0.1 and 0.2 mm. Each of the given displacement increments was applied on the specimens with a linear displacement increase employing the following time spans: 5, 10, 20, 30, 60, 120, 300, 450, and 600 seconds. Force values were measured during load application to register force/displacement diagrams and after the maximum displacement was reached force decay was monitored for a period of 600 seconds. Force/time curves for each tooth were plotted according to the data obtained. Diagrams of the maximum force values obtained from these plots and the force at the end of each measurement were extracted for all teeth. Forces at the point when maximum displacement was reached ranged from 0.5 to 2.5 N for the 0.1 mm activation and showed extreme variation with the specimens. The factor of volume and surface area of the individual roots were evaluated and found not to be responsible for these deviations. A comparable behaviour was recorded for the 0.2 mm deflection, however, on a higher force level. The results show that the force development at different displacement velocities is complex and dominated by the PDL biomechanical characteristics.
منابع مشابه
Numerical simulation of the biomechanical behaviour of multi-rooted teeth.
The elastic properties of the periodontal ligament (PDL) in eight multi-rooted teeth were examined in a combined experimental and numerical study in six minipigs. The initial tooth movement of the mandibular primary molars surrounded by the periodontium was registered three-dimensionally (3D) in an optomechanical measuring system. The dissections were then embedded in resin and cut in transvers...
متن کاملCanine Periodontal Stem Cells: Isolation, Differentiation Potential and Electronic Microscopic Characterization
Objective- Investigating of the isolation, culture, differentiation potential and electronic microscopic characterization of canine periodontal ligament stem cells (PDLSCs). Design- Experimental in vitro study Animals- Four intact, male, mongrel dogs, 8-10 months-old were selected to collect PDLSCs from their teeth. Procedures- The dogs were anesthetized and the first maxillary and mandibula...
متن کاملBiomechanical time dependency of the periodontal ligament: a combined experimental and numerical approach.
The analysis of the non-linear and time-dependent viscoelasticity of the periodontal ligament (PDL) enables a better understanding of the biomechanical features of the key regulator tissue for tooth movement. This is of great significance in the field of orthodontics as targeted tooth movement remains still one of the main goals to accomplish. The investigation of biomechanical aspects of the P...
متن کاملA Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملA Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments
Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of orthodontics
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2014